
The Choreography Model for IRS-III

John Domingue, Stefania Galizia and Liliana Cabral
Knowledge Media Institute, The Open University, Milton Keynes, UK

{J.B.Domingue, S.Galizia, L.S.Cabral}@open.ac.uk

Abstract

This paper describes how we manage the

interaction between different heterogeneous web
services through choreographies within IRS-III.

 IRS-III is a framework and platform for
developing WSMO based semantic web services. Our
choreography framework is based on the KADS
system-client co-operation model that represents
communication through two dimensions: the message
direction and which actor has the initiative. Our
formalism is state based and is thus compliant with
Abstract State Machine (ASM) model used within
WSMO.

In addition to describing our approach in this
paper we provide a formal semantics for IRS
Choreography and a full implementation which we
illustrate through an example application.

1. Introduction

Web Services promise to turn the web of static
documents into a vast library of interoperable running
computer programs and as such have attracted
considerable interest, both from industry and
academia.

Recent efforts to enhance the Web Services
technologies have tried to raise the web to a new level
of service. Software application available on the Web
can be accessed, executed and composed thanks to the
idea of Web Services.

Web Services provide a mechanism to connect
applications regardless of the underlying
software/hardware platform and their location. From
an IT perspective the key features of web services are
that, a) they are based on standard XML based
protocols which can run over the internet and b) the
descriptions of a web service are distinct from the
actual implementation. From a business perspective
one key feature is that web services can be viewed as
implementations of business services. Commercial
organizations can thus use web services technology to

expose elements of their business processes. For
example, Amazon Web Service (AWS) allows
software developers to directly access their
technology platform and product data [1].

Interest in web service technology is high. Many of
the major IT vendors (e.g. Microsoft, IBM, SAP) now
provide web service based solutions. Moreover,
current predictions indicate that the market for web
service based solutions will be worth $2.9 billion in
2006 growing to $6.2 billion by 2008 [13].

Many efforts are still necessary to obtain a
complete growth of Web Services. Currently the Web
Service technologies fall on the restricted capability to
support automated service composition, recognition
and comparison. Their limit comes out from the total
absence of semantic representation of the services
available on the internet. The descriptions,
represented in XML-based description languages such
as WSDL [23] and UDDI [21], mostly focus on the
specification of the input and output data types and
the access details. These specifications are obviously
not powerful enough to support automatic discovery,
mediation and composition of web services. A
software agent cannot find out what a web service
actually does, by reasoning about a WSDL
specification. Analogously the same agent cannot
locate the appropriate service in UDDI registry, given
a specification of a target functionality. As a result,
existing web service infrastructures by and large
support a manual approach to web service
management: only manual discovery can be supported
and only ‘static’, manually configured web
applications are possible.

The web service community is now beginning to
accept that the majority of the current problems
associated with web services are related to the fact
that all of the technologies are based on syntactic
descriptions. Requiring IT specialists to discover,
compose and deploy web services manually is time-
consuming, costly and error-prone. Semantic
differences remain the primary roadblock to smooth
application integration, one which Web Services
alone won't overcome [7].

The most significant task when connecting
software components together is not the plumbing
(the data and control flow), but coping with the
semantic differences. Two main types of mismatches
can occur. The first is that the data can have different
underlying representations. For example, one web
service may represent an address as a number
followed by a street name and town, whereas another
may represent an address as a number followed by a
postal code. The second type of problem is related to
interaction. Each web service will have a specific
interaction pattern related to how the underlying
processes are implemented. For example, one web
service may require credit card details (e.g. card
number, card expiry date) to be sent one at a time
whereas another may require that all details are sent in
a single message.

In this paper we describe how we cope with
heterogeneous web service interaction patterns in the
context of IRS-III [6]. IRS-III is a framework and
implemented infrastructure which supports the
creation of semantic web service based applications.
IRS-III has been used to teach semantic web services
in a number of tutorials [19] and is currently being
deployed in a number of application areas in the
context of the DIP [5] project. Following the WSMO
[17] framework we use the term choreography to
denote the IRS-III component which deals with web
service interaction. Our primary contributions which
we describe in this paper include: a set of design
principles for choreography, a formal definition of
choreography based on abstract state machines, a well
founded set of ontology based choreography specific
primitives and a full implementation.

The rest of this paper is structured as follows: in
the follow section we provide an overview on WSMO
and IRS-III, then we present choreography within
IRS-III outlining our formal model, the informal
description and the main primitives. In section 4 we
describe an example application and the final section
concludes the paper.

2. Background

In this section we present an overview on the
Choreography definitions, an introduction of the Web
Service Modeling Ontology (WSMO) [17] and of the
IRS-III framework.

2.1. Choreography definitions

The Choreography of a Web Service defines the

communication protocol between the server and a
deployed Web Server in terms of message exchanges
[22]. Several approaches are currently available to

describe the interactions between web services. A
global vision of choreography describes the behaviour
observable from an external point of view,
emphasizing the collaboration of parties, where the
communication progresses only when jointly agreed
ordering rules are satisfied [12]. Dijman and Dumas
[4] depict both static and dynamic aspects of the
global communication among heterogeneous web
services using Petri Nets. Many levels of abstractions
are also proposed. W3C depicts three abstraction
choreography levels: abstract, portable and concrete
[22]. However the requirements emerging from
eBusiness necessitate that web services exchange
information at a semantic level. Thus the
choreography of a semantic web service should
include a communication protocol specification which
represents functionality at a semantic level.

The main current approaches to representing web
service communication at a semantic level are
proposed by the WSMO [17] and OWL-S [16]
working groups.

A web service description within WSMO contains
an interface definition. An interface includes a
definition of orchestration – how a composite web
service invokes subsidiary web services – and a
choreography.

In contrast OWL-S does not provide an explicit
definition of choreography but instead focuses on a
process based description of how complex web
services invoke atomic web services.

2.2. WSMO

The Web Service Modeling Ontology (WSMO)

[17] is a formal ontology and language for describing
the various aspects related to Semantic Web Services.

The main goal of WSMO is to enable e-commerce
by applying Semantic Web technologies to Web
Services. The semi-automated discovery, composition
and execution of Web Services is based on logical
inference-mechanisms. WSMO has the Web Service
Modeling Framework (WSMF) [8] as a starting point;
it refines this framework and develops a formal
ontology and a formal language. The WSMF is
composed by four different main elements: Goals,
Web Services, Ontologies and Mediators.

The Goals represent the targets, the final problems
solved by Web Services, requested by the user. The
WSMO definition of goal concerns the state of the
desired information space, describes the desired state
of the world after the execution of a given Web
Service. A goal can import existing concepts and
relations defined elsewhere either extending or simply
reusing them as appropriate.

The Web Services description concerns all aspects
of the Web Services. They represent the functional
behaviour which must be semantically described in
order to allow operations of discovering, invocation,
composition, execution, and everything concerns its
semi-automated use. The interface is part of Web
Services, and is composed by Choreography and
Orchestration.

Ontologies are the key elements in WSMO, they
provide the terminology used by other elements,
allow to link machine and human terminologies and
define the information formal semantics.

Mediators provide the means to link the three
components described above. The incorporation of
mediators in WSMO facilitates the clean separation of
different interoperability mechanisms.

2.3. IRS-III

The IRS project has the overall aim of supporting
the automated or semi-automated construction of
semantically enhanced systems over the internet. IRS-
I [3] supported the creation of knowledge intensive
systems structured according to the UPML framework
[9] and IRS-II [15] integrated the UPML framework
with web service technologies. Within IRS-III we
have now incorporated and extended the WSMO
ontology [17].

IRS-III has four main classes of features which
distinguish it from other work on semantic web
services. Firstly, it supports one-click publishing of
‘standard’ program code. In other words, it
automatically transforms programming code
(currently we support Java and Lisp environments)
into a web service, by automatically creating an
appropriate wrapper. Hence, it is very easy to make
existing standalone software available on the net, as
web services.

Secondly, by extending the WSMO goal and web
service concepts, clients of IRS-III can directly
invoke web services via goals - that is IRS-III
supports capability-driven service invocation.

Thirdly, IRS-III is programmable. We allow IRS-
III users to substitute their own semantic web services
for some of the main IRS-III components.

Finally, IRS-III services are web service
compatible – standard web services can be trivially
published through the IRS-III and any IRS-III service
automatically appears as a standard web service to
other web service infrastructures. In the rest of the
paper we will use the terms “IRS” and “IRS-III”
interchangeably.

3. IRS-III choreography

A choreography is described in IRS-III by a
grounding declaration and a set of guarded transitions.
The grounding specifies the operations involved in
the invocation of a Web Service and their mapping to
the implementation level. More specifically, the
grounding definitions have the following structure:
operation-name, input-roles-soap-binding, output-
role-soap-binding. The guarded transitions are the set
of rules applied when executing the choreography.

In the rest of this section we present our
choreography model at several levels of abstraction.
We provide, at first, the formal model and in
following the design principles in a more informal
way.

3.1. Formal model

Our abstract model of choreography is represented
by four main entities: events, states, conditions, and
guarded transitions.

We perform the IRS-III choreography through the
tuple 〉〈 TCSE ,,, , where

E is a finite set of events;
S the (possibly infinite) set of states;
C the (possibly infinite) set of conditions;
T represents the (possibly infinite) set of the

conditional guarded transitions.
The events that can occur are: {obtain, present,

provide, receive, obtain-initiative, present-initiative}
[10]. Every event maps to an operation during the
conversation viewed from the IRS perspective.

The states are the possible message exchange
pattern instantiations. A state si ∈ S at a given
conversation step Ti, is represented by a set of
instances. It contains a constant subset, the web
service host, port, location, that is invariant whenever
the same web service is invoked, and the event
instantiation, dependent on the event that occurred at
step Ti.

The web service host, port and location are defined
during the IRS publishing process – see section 2.3.

A condition c ∈ C depicts a situation occurring
during the conversation.

The guarded transitions, according with WSMO
definition [18], express changes of states by means of
rules:

A guarded transition t ∈ T, is a function
() SSt

E

C →2 ,: ,

that associates a couple (s, {c1, .., cj,) to s’, where s
and s’ ∈ S, and every ck (1 ≤ k ≤ i) ∈ C.

A guarded transition updates the communication
state by an event e∈ E.

3.2. Informal description

In this section we list the main design principles

which motivate our choreography model.
Our choreography description is state-based, it means
that any message sent by the IRS to a web service will
depend on its current state, which will include a
representation of the messages received during the
current conversation.

Given the above we decided to adopt the Abstract
State Machine (ASMs) model [2] to represent IRS
choreography. Additionally, ASMs are also used
within WSMO [18] which is the ontology adopted
within IRS-III. A further reason for using ASMs is
that they combine mathematical rigor with a practical
execution model to represent message exchange
patterns.

Once the grounding is defined, the sequence of
operations and the message instance pattern
instantiations are generated through the evaluation of
conditions. A condition is a generic statement on the
current situation, for instance, that an error has
occurred. The executive part of the guarded
transitions (after ‘then’) updates the state. We can
easily represent the guard transition execution and
state updating by a decision tree shown in figure 1.
Every node symbolizes a state and the labeled edges
are the triggering events by guarded transitions, given
a set of condition and a state.

Fig. 1 Decision tree representing the

guarded transitions execution.

The general form of a guarded transition is given
below:

“if currentstate = s ∧ Cond then currentstate = s1 ”

We have chosen to classify the communication in

IRS choreography according to two dimensions,
following the system-client cooperation model
proposed in KADS [11], namely:

• The initiative in the communication, and

• The direction of the communication.
The initiative expresses which actor, either IRS or

the web service, is responsible for starting the
communication, while the direction represents the
communication route, which can be from the system
to the client or vice-versa.

The reason for preferring this communication
model is that in this way we can verify at every state
which actor has initiative. Initiative is associated with
the actors who in some sense have control of the
conversation. For example, only actors with initiative
are allowed to start a conversation or update data
previously sent.

A message exchange event is a kind of transfer
task, an elementary executed operation by an actor
during a conversation.

From the IRS perspective, and according to Greef
and Breuker’s communication representation [10]
[11], we consider six kinds of events: obtain, present,
provide, receive, obtain-initiative, present-initiative.
When the IRS does not have the initiative, receive and
provide messages are used. Conversely, obtain and
present events occur when the IRS is in control of the
conversation. Obtain-initiative and present-initiative
allow the initiative to be transferred. For detailed
event descriptions see [10].

When a client, that can also be a web service,
invokes the IRS, in order to achieve a goal, the
choreography engine runs. We depict a simple
invocation goal scenario below, underlining the
events involved during choreography execution.

Fig. 2 A typical sequence of choreography

events.

The client initiates the communication with IRS by

requesting that a goal be achieved. Within our model
this corresponds to receive and obtain-initiative
events as the client delegates initiative to the IRS to
invoke the required service. During a second phase
the IRS invokes a web service which returns a
response. In this phase the IRS has the initiative and
therefore the occurring events are “present” and
“obtain”. Figure 2 depicts the event sequence for this
typical goal driven web service invocation scenario.
 There will be some situations where it is necessary
to suspend the current dialog and resume it later. For
example, either the IRS or the web service may not
have some required data or a web service may go

offline. In these case both, IRS and the web service
are the ability to suspend the communication and
resume it later.
 The semantic representations of choreography
should be executable directly or should be able to be
compiled to a runnable representation. Our underlying
modelling language OCML [14] is operational.

3.3. Choreography primitives

 If we want our system to be used widely, it is
important that the components are easy to use. For
this reason our set of choreography specific primitives
is relatively small.

We have defined a set of choreography specific
primitives which can be used in guarded transitions.
Our primitives provide an easy to use interface to
control a conversation between the IRS and a web
service. Developers are also able to include any
relation defined with the imported ontologies within
guarded transition specifications.
Init-choreography. Initializes the state of the
choreography. This primitive runs before a web
service is invoked by IRS. At this step IRS has the
initiative and it is ready to start the communication.
Send-message. Calls a specific operation in the Web
service. If no inputs are explicitly given IRS obtains
the input values from the original goal invocation (see
figure 4).

The type of event which occurs with send-message
is “present” since the IRS holds the initiative and the
communication direction is from the IRS to the web
service (see figure 2).
Send-suspend. Suspends the communication between
IRS and the web service, without stopping the
choreography executions. This action will occur, for
example, when the IRS lacks some data required by a
web service. Executing this primitive suspends the
dialog and stores the current state so that
communication can be resumed later. The event
associated to send-suspend is “present” since
communication direction is from the IRS to the web
service and the IRS has (and keeps) the initiative.
Received-suspend. The communication is suspended
by the web service, when for some reason it is not
able to respond to an invocation. As with send-
suspend the choreography execution is put on hold.
The web service is free to resume the dialog when
conditions allow. The event occurring here is
“receive”, because the web service has taken the
initiative from IRS and the communication direction
is from the web service to IRS.

Figure 3 shows all events which occur when a web
service suspends communication. Initially IRS has
initiative, but it is handed over to the web service

which suspend the communication through the event
“receive”. When the web service resumes the dialog
the associated event is “receive” again, because the
web service has the initiative.
Received-message. Contains the result of a successful
send-message for a specific operation (see figure 4).
In the general case the trigged event is “obtain” as
shown in figure 2. If however the web service had
previously suspended the communication it will be
“receive” (see figure 3). In the both situations the
message direction is from the web service to the IRS,
but in the former one, IRS has the initiative, and in the
latter the web service has control of the dialog.

Fig. 3. The occurring events when the web
service suspends the communication.

Received-error. If the execution of a web service
causes an error to occur then the received-error
primitive is used. The parameters of received-error
include the error message and the type of error which
occurred. In a fashion similar to received-message,
described above, the event taking place is either
“obtain” (see figure 2), or “receive” (see figure 3).
End-choreography. Stops the choreography. No
other guarded transitions will be executed.

The IRS server carries out inferences at an
ontological level. During communication with a web
service the ontological level descriptions need to be
mapped to the XML based representations used by the
specific web service invoked. We provide two
primitives which map a) from the ontological level to
XML (lower) and b) from XML to the ontological
level (lift) how shown in figure 4.

Fig. 4. The main choreography running

primitives during the goal invocation.

Lift. Lifts an XML string into an ontological
construct, represented in OCML. A generic version of
this relation is defined within the IRS ontology. SWS
developers are free to overwrite this relation inline
with the relationship between the results of web
service calls and the ontologies used. The lift
primitive has the following input parameters: class-
name, web-service-class, xml-string and produces an
instance of class-name as output. The semantic
developer can thus customize how XML is parsed
according the classes within the underlying ontology
and the particular web services selected. In order to
cope with XML based input the lift primitive utilizes
an inbuilt SAX based XML parser.
Lower. Lowers the ontological construct to XML.
The input parameters to lower are: instance-name and
a class web-service. The output is xml-string. As for
the lift primitive the XML generated can be
customized according to classes within the ontology
and the web service class. For example, the XML
generated for instances of a person class may include
a full name for one web service and only a family
name for another.

The IRS publishing platform is responsible for the
actual invocation of a web service; additionally, it
automatically generates wrappers which turn
standalone code into a web service. The platform also
copes with the syntactic level differences between the
various web service platforms e.g. AXIS and Apache.

4. An example: Virtual travel agency
(VTA)

IRS uses a forward-chaining-rule engine to execute
a choreography. This means the rules belonging to a
choreography are fired according to the state.

Within the IRS there is an internal method which
selects one guarded transition when two or more are
selected.

One important feature of the execution
environment of IRS is that it allows the scope of the
choreography to be defined for the set of ontologies
involved in the Web Service description.

As mentioned earlier one of the overall design
features for IRS-III is that it is open. The main
components of IRS-III are defined as semantic web
services which can be overridden by developers if
desired. Below we show the goal definition for the
choreograhpy component.

Run-Choreography-goal
Input Roles:

Has-web-service web-service “sexpr”
Has-input-role-value-pairs
list “sexpr”

Output Role:
Has-output ocml-thing “sexpr”
The choreography starts with the guarded

transition containing init-choreography and it ends
with the end-choreography execution.

Our example application is based on the WSMO
Virtual Travel Agency (VTA) application [20]. The
overall scenario is to provide a portal where clients
can ask for train tickets between any two cities in
Europe specifying a departure time and date. The
portal maintains a profile for regular users which
contains personal preferences.

The goal has four input roles: Has-person, Has-
departure-station, Has-destination-station, Has-date-
and-time. Each input role has a type which is a class
from the underlying ontology and a soap binding. For
example, Has-departure-station has the type city and
sexpr soap type (we created our own specific soap
type for Lisp s-expressions). The goal has a single
output role Has-booking-order which has the type
string and soap type string. The date and time are
given in a list format containing seconds, minutes,
hours, date, month and year e.g. (30 20 14 5 4 2005)
for 14:20:30 on 5th of April 2005.

Buy-train-ticket-goal
Input Roles:
 Has-person person “sexpr”
 Has-departure-station city “sexpr”
 Has-destination-station city “sexpr”
 Has-date-and-time list-date-and-time
 “sexpr”
Output Role:
 Has-booking-order string “string”

Our implementation of the VTA includes four web

services which can book tickets for specific countries
(e.g. Austria, France) and two which can book tickets

for travellers with particular profiles (e.g. students and
business people). In the rest of this description we
will focus on one particular web service – the train
ticket service for Germany - and describe its
choreography.

If the traveller booking the train ticket is a gold
card member the German train ticket service offers a
free upgrade to first class. Travellers can state that
they automatically accept these offers within their
profile. The choreography definitions below enable
the IRS to interact with the web service so that the
correct types of bookings are made.

German-buy-train-ticket-service
Input Roles:
 Has-date-and-time
 universal-date-and-time “int”
Capability:
 german-buy-train-ticket-capability
Interface:

german-buy-train-ticket-service-
interface

The train ticket service German-buy-train-

ticket-service simply points to the functional
definition contained in the capability and the deployed
web service details contained in the interface. The
web service is linked to the buy-train-ticket-goal
through the universal-time-buy-train-

ticket-mediator (the definition is below). Web
service’s linked in this way automatically ‘inherit’ the
input and output roles from the associated goal. For
the definition above we have overridden the type and
soap bindings for one of the goal’s input roles has-
date-and-time. The deployed web service which
implements German-buy-train-ticket-service
takes time in universal time format which is a single
integer.

German-buy-train-ticket-capability
Used-mediator: universal-time-buy-train-
ticket-mediator
Assumption:

 (kappa (?goal)
 (and (not (student (wsmo-role-value
 ?goal 'has-person)))
 (not (business-person
 (wsmo-role-value

 ?goal 'has-person)))
 (is-in-country
 (wsmo-role-value
 ?goal 'has-departure-station)
 germany)
 (is-in-country
 (wsmo-role-value

 ?goal 'has-destination-station)
 germany))))

The German-buy-train-ticket-capability
definition contains the universal-time-buy-

train-ticket-mediator which is shown below.
The assumption contains an OCML expression which
is used by IRS-III to select the web service. The
assumption expression above states that the German-
buy-train-ticket-service should be selected if
the person is not a student or business person and both
the departure and destination stations are in Germany.

Universal-time-buy-train-ticket-mediator
source-component:
 buy-train-ticket-goal
mediation-service:
 universal-time-buy-train-ticket-
 mediation-goal

The mediator above transforms a list representing

the date and time given to Buy-train-ticket-goal
into a single integer in universal time format. The
mediation service universal-time-buy-train-

ticket-mediation-goal is a standard WSMO
goal with an associated web service which is able to
carry out the transformation.

German-buy-train-ticket-service-
interface
choreography:
 german-buy-train-ticket-service-
 choreography

The interface above simply points to the

choreography for the web service.

German-buy-train-ticket-service-
choreography grounding:

normal
book-german-train-journey
 has-person "sexpr”
 has-departure-station "sexpr"
 has-destination-station "sexpr"
 has-date-and-time "sexpr"
 "string"

 first-class-upgrade
 book-first-class-upgrade-german-
 train-journey
 …..

 standard-class
 book-standard-class-german-train-
 journey
 …..

 acknowledge-error
 acknowledge-error-message
 has-acknowledgement "int"
 "string"

guarded-transitions:

start
 init-choreography
then
 send-message 'normal

accept-first-class-upgrade
 received-message normal ?result
 upgrade-class ?result
 operation-input normal has-person
 ?person
 accept-upgrade ?person ?accept-
 upgrade
then
 send-message 'first-class-upgrade
 end-choreography

 date-error-transition
 received-error normal ?error-
 message ?error-type
 date-format-error ?error-type
then
 send-message-with-new-input-role-
 pairs
 'acknowledge-error
 (has-acknowledgement 0)

end-choreography

The choreography contains two components. The

first is a grounding which maps between semantic
operations and the implementation level. Above we
show the full grounding for the normal and
acknowledge-error operations and only partial
definitions for the other operations. After the
operation name the next part of the grounding shows
the name of the implementing component. In this case
it is the name of the Lisp function within the Lisp
publishing platform. For a standard web service it
would be the name of the operation within the WSDL
file and for a Java implementation it would be the
name of the Java class and method. The soap
bindings for the inputs and output are then specified.

The second part of the choreography is the set of
guarded transitions. Above we show three guarded
transitions. Start initializes the choreography session
and then invokes the deployed service by sending the
message associated with the normal operation. Send-
message is a choreography specific relation which
takes the values of the input roles from the associated
goal instance, transforms the values to an XML
representation (using a relation called lower), and
then invokes the web service. Accept-first-

class-upgrade uses the choreography specific
received-message relation. Responses from a web
service invocation are first transformed into an
ontological representation, using the relation lift,

and then asserted as (received-message
<operation-name> <lifted-invocation-

response>). The following expressions in the
condition check whether the result of the invocation is
an offer of an upgrade and whether the traveller’s
profile states that s/he automatically accepts upgrades.
The executive part of the guarded transition sends a
message for the first-class-upgrade operation and ends
the choreography.

The final guarded transition shown, date-error-
transition, handles errors. If invoking a web
service causes an error then an instance of the relation
received-error is created. The signature of this
relation is <operation> <error-message>

<error-type>. Error-type is an instance of a
subclass of the invocation-error class. The condition
for this guarded transition checks to see if the error is
a date format error. When this is the case the
acknowledge-error operation is invoked. Note that
because the input-role name and value (has-
acknowledgement and 0) are not present in the
original goal invocation they are provided here.
Hence the use of the relation send-message-with-
new-input-role-pairs.

German-buy-train-ticket-service-
publisher-information

web-service-host: "137.108.24.227"
web-service-port: 3001
web-service-location: "/soap"

Once the semantic descriptions have been created

we ‘publish’ the web service through a simple dialog
where we state the URL of the appropriate publishing
platform. The definition created for the german-

train-ticket-service is shown above.
Before running a set of guarded transitions the IRS

creates a new ontology which inherits from the
ontology in which the web service is defined. All new
assertions are made within the new ontology which is
deleted after the choreography ends (with end-
choreography). This allows the IRS to cope with
simultaneous goal driven web service requests.

5. Conclusions and future work

In this paper we have described how IRS-III is able
to handle heterogeneity related to web service
interaction patterns through a choreography.

Enabling heterogeneous software components,
available on the internet, to be integrated is a primary
aim for research in the area of semantic web services.
Our underlying design principles are based on the use
of state, the dimensions of initiative and
communication direction, the provision of a formal

description, and semantic descriptions which are
based on simple-to-use constructs and can be
executed.

We have shown through a detailed example how
choreographies can be defined and executed with little
effort with our framework. As mentioned earlier a key
element of our design is that the choreography
component of IRS-III is itself a semantic web service
allowing developers to easily replace our
choreography execution engine with another if
desired.

We are currently deploying an IRS-III based
application within an e-Government demonstrator in
the context of the DIP project. The IRS-III
browser/editor and publishing platforms are currently
available at http://kmi.open.ac.uk/projects/irs/.

Ackowledgements

This work is supported by DIP (Data, Information
and Process Integration with Semantic Web Services)
(EU FP6 - 507483) and AKT (Advanced Knowledge
Technologies) (UK EPSRC GR/N15764/01) projects.

References

[1] Amazon (2005). Web Services (Available at
http://www.amazon.com/gp/browse.html/104-6906496-
9857523?%5Fencoding=UTF8&node=3435361).
[2] Börger, E., (1998). High Level System Design and
Analysis Using Abstract State Machines. In Proceedings of
the International Workshop on Current Trends in Applied
Formal Method: Applied Formal Methods, p.1-43, October
1998.
[3] Crubezy, M., Motta, E., Lu, W. and Musen, M. (2002).
Configuring Online Problem-Solving Resources with the
Internet Reasoning Service. IEEE Intelligent Systems 2002.
[4] Dijkman, R. and Dumas, M. (2004). Service-Oriented
Design: A Multi-Viewpoint Approach. International Journal
of Cooperative Information Systems 13(4): 337-368, 2004.
[5] DIP (2005). The DIP Project.
http://dip.semanticweb.org/.
[6] Domingue, L. Cabral, F. Hakimpour,D. Sell and E.
Motta (2004). IRS III: A Platform and Infrastructure for
Creating WSMO-based Semantic Web Services.
Proceedings of the Workshop on WSMO Implementations
(WIW 2004) Frankfurt, Germany. CEUR Workshop
Proceedings, ISSN 1613-0073 II.
[7] Ellison, L., (2002). Looking Toward the Next Phase for
Web Services. (Available at
http://webservicesadvisor.com/doc/09586).
[8] D. Fensel, D. and Bussler, C. (2002). The web service
modeling framework wsmf. Electronic Commerce Research
and Applications, 1(2):113–137, 2002.
[9] Fensel, D. and Motta, E. (2001). Structured
Development of Problem Solving Methods. IEEE
Transactions on Knowledge and Data Engineering, Vol.
13(6). 913-932.

[10] Galizia, S. and Domingue, J. (2004). Towards a
Choreography for IRS-III. Proceedings of the Workshop on
WSMO Implementations (WIW 2004) Frankfurt, Germany,
September 29-30, 2004, CEUR Workshop Proceedings,
ISSN 1613-0073. (Available at http://CEUR-WS.org/Vol-
113/paper7.pdf).
[11] Greef, H. P. and Breuker, J. A. (1992). Analysing
system-user cooperation in KADS. Knowledge Acquisition,
4:89–108, 1992.
[12] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T.,
Lafon, Y. (Eds) (2004). Web Service Choreography
Description Language Version 1.0. W3C Working Draft 17
December 2004. (Available at
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/).
[13] Kerner, S. M. (2004). Web Services Market to Explode
(Available at http://www.internetnews.com/dev-
news/article.php/3413161)
[14] Motta, E., (1998). An Overview of the OCML
Modelling Language, The 8th Workshop on Knowledge
Engineering Methods and Languages (KEML '98).
[15] Motta, E., Domingue, J., Cabral, L. and Gaspari, M.
(2003) IRS-II: A Framework and Infrastructure for
Semantic Web Services. In proceeding of the 2nd
International Semantic Web Conference (ISWC2003)..
Sundial Resort, Sanibel Island, Florida, USA. LNCS 2870,
pp. 306–318.
[16] OWL-S Working Group (2004) OWL-S: Semantic
Markup for Web Services (Available at
http://www.daml.org/services/owl-s/1.1/overview/).
[17] Roman, D., Lausen, H., Keller, U. (Eds) (2005) The
Web Service Modeling Ontology WSMO, final version 1.1.
WSMO Final Draft D2, 2005.
[18] Roman, D., Sciluna, D., Feier, C. (Eds) (2005).
Ontology-based Choreography and Orchestration of WSMO
Services. Final Draft D14.
[19] Stollberg, M. and Arroyo, S. (2005). WSMO Tutorial.
WSMO Deliverable (Available at
http://www.wsmo.org/TR/d17/)
[20] Stollberg, M., Lara, R. (Eds) (2004) D3.3 v0.1 WSMO
Use Case: Virtual Travel Agency.
[21] UDDI (2003) UDDI Spec Technical Committee
Specification v. 3.0, http://uddi.org/pubs/uddi-v3.0.1-
20031014.htm
[22] W3C (2004). Web services choreography model
overview. W3C Working Draft 24 March 2004 (Available
at http://www.w3.org/TR/2004/WD-ws-chor-model-
20040324).
[23] WSDL (2001) Web Services Description Language
(WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-wsdl-
20010315.

